题目内容
已知等差数列{an} 中,a3=7,a1+a2+a3=12,令bn=an•an+1,数列{
}的前n项和为Tn.
(1)求数列{an}的通项公式;
(2)求证:Tn<
;
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,请说明理由.
| 1 |
| bn |
(1)求数列{an}的通项公式;
(2)求证:Tn<
| 1 |
| 3 |
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,请说明理由.
(1)设数列{an}的公差为d,由
解得
.∴an=1+(n-1)×3=3n-2.
(2)∵an=3n-2,an+1=3n+1,∴bn=an•an+1=(3n-2)(3n+1),
∴
=
=
(
-
).
∴Tn=
(1-
)<
.
(3)由(2)知,Tn=
,∴T1=
,Tm=
,
∵T1,Tm,Tn成等比数列,∴(
)2=
•
,即
=
.
当m=2时,
=
,n=16,符合题意;
当m=3时,
=
,n无正整数解;
当m=4时,
=
,n无正整数解;
当m=5时,
=
,n无正整数解;
当m=6时,
=
,n无正整数解;
当m≥7时,m2-6m-1=(m-3)2-10>0,则
<1,而
=3+
>3,
所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
|
|
(2)∵an=3n-2,an+1=3n+1,∴bn=an•an+1=(3n-2)(3n+1),
∴
| 1 |
| bn |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
(3)由(2)知,Tn=
| n |
| 3n+1 |
| 1 |
| 4 |
| m |
| 3m+1 |
∵T1,Tm,Tn成等比数列,∴(
| m |
| 3m+1 |
| 1 |
| 4 |
| n |
| 3n+1 |
| 6m+1 |
| m2 |
| 3n+4 |
| n |
当m=2时,
| 13 |
| 4 |
| 3n+4 |
| n |
当m=3时,
| 19 |
| 9 |
| 3n+4 |
| n |
当m=4时,
| 25 |
| 16 |
| 3n+4 |
| n |
当m=5时,
| 31 |
| 25 |
| 3n+4 |
| n |
当m=6时,
| 37 |
| 36 |
| 3n+4 |
| n |
当m≥7时,m2-6m-1=(m-3)2-10>0,则
| 6m+1 |
| m2 |
| 3n+4 |
| n |
| 4 |
| n |
所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
练习册系列答案
相关题目