题目内容
已知数列{an}的前n项和为Sn,且满足3Sn=4an-8.
(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=log2an,若Tn是数列{bn}的前n项和,求数列{
}的前n项和.
(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=log2an,若Tn是数列{bn}的前n项和,求数列{
| 1 | Tn |
分析:(1)再写一式,两式相减,可得数列{an}是以8为首项,4为公比的等比数列,由此可求数列{an}通项公式;
(2)确定数列{bn}的通项,进而可求数列{bn}的前n项和,利用裂项法,可求数列{
}的前n项和.
(2)确定数列{bn}的通项,进而可求数列{bn}的前n项和,利用裂项法,可求数列{
| 1 |
| Tn |
解答:解:(1)∵3Sn=4an-8,①
∴当n≥2时,3Sn-1=4an-1-8②
①-②得,3(Sn-Sn-1)=4an-4an-1,∴an=4an-1,
n=1时,3S1=4a1-8,∴a1=8
∴数列{an}是以8为首项,4为公比的等比数列
∴an=22n+1;
(2)bn=log2an=2n+1,∴Tn=
=n(n+2)
∴
=
=
(
-
)
∴数列{
}的前n项和为
(1-
+
-
+
-
+…+
-
)=
(1+
-
-
)=
∴当n≥2时,3Sn-1=4an-1-8②
①-②得,3(Sn-Sn-1)=4an-4an-1,∴an=4an-1,
n=1时,3S1=4a1-8,∴a1=8
∴数列{an}是以8为首项,4为公比的等比数列
∴an=22n+1;
(2)bn=log2an=2n+1,∴Tn=
| n(3+2n+1) |
| 2 |
∴
| 1 |
| Tn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列{
| 1 |
| Tn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3n2+9n+4 |
| 2(n+1)(n+2) |
点评:本题考查数列递推式,考查数列的通项与求和,确定数列的通项,利用裂项法求和是关键.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |