ÌâÄ¿ÄÚÈÝ
ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊN+)µÄͼÏóÓëxÖᣬyÖáÎÞ½»µãÇÒ¹ØÓÚÔµã¶Ô³Æ£¬ÓÖÓк¯Êýf£¨x£©=x2-alnx+m-2ÔÚ£¨1£¬2]ÉÏÊÇÔöº¯Êý£¬g£¨x£©=x-a
ÔÚ£¨0£¬1£©ÉÏΪ¼õº¯Êý£®
¢ÙÇóaµÄÖµ£»
¢ÚÈô
=2f¡ä(x)-2x+
+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=p£¨an£©£¬£¨n¡ÊN+£©£¬ÊýÁÐ{bn}£¬Âú×ãbn=
anan+13n£¬sn=b1+b2+b3+¡+bn£¬ÇóÊýÁÐ{an}µÄͨÏʽanºÍsn£®
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
+
£¬ÊԱȽÏ[h£¨x£©]n+2Óëh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£¬²¢ËµÃ÷ÀíÓÉ£®
| x |
¢ÙÇóaµÄÖµ£»
¢ÚÈô
| 1 |
| p(x) |
| 5 |
| x |
| 1 |
| 2 |
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
| x |
| 3 |
| x |
·ÖÎö£º¢ÙÓÉÃݺ¯ÊýµÄ¶¨ÒåºÍÒÑÖªÌõ¼þÇóµÃÕýÕûÊým=2£®¸ù¾Ýf¡ä£¨x£©=2x-
¡Ý0¶ÔÓÚÇø¼ä£¨1£¬2]ºã³ÉÁ¢£¬ÇóµÃa¡Ü2£®ÔÙ¸ù¾Ýg¡ä£¨x£©=1-
¡Ü0¶ÔÓÚÇø¼ä£¨0£¬1£©ºã³ÉÁ¢£¬ÇóµÃ a¡Ý2£®×ÛÉÏ£¬¿ÉµÃaµÄÖµ£®
¢ÚÓÉp£¨x£©=
£¬¿ÉµÃ
+
=3£¨
+
£©£¬¹ÊÊýÁÐ{
+
}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ¬ÇÒÊ×ÏîΪ
£®¸ù¾ÝµÈ±ÈÊýÁеÄͨÏʽÇóµÃ an=
£®ÔÙÓÉ bn=
anan+13n=
-
£¬ÓÃÁÑÏî·¨ÇóµÃSn=b1+b2+b3+¡+bnµÄÖµ£®
¢Û¸ù¾Ýh£¨x£©=x+
£¬µ±n¡Ý2ʱ£¬[h£¨x£©]n-h£¨xn£©=(x+
)n-£¨xn+
£© ÀûÓöþÏîʽ¶¨Àí»¯Îª=
[
£¨xn-2+
£©+
£¨xn-4+
£©+¡+
£¨x2-n+
£©]¡Ý
+
+
+¡+
=2n-2£¬¼´¿É±È½Ï±È½Ï[h£¨x£©]n+2¡Ýh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£®
| a |
| x |
| a | ||
2
|
¢ÚÓÉp£¨x£©=
| x |
| x+3 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3n-1 |
| 1 |
| 2 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
¢Û¸ù¾Ýh£¨x£©=x+
| 1 |
| x |
| 1 |
| x |
| 1 |
| xn |
| 1 |
| 2 |
| C | 1 n |
| 1 |
| xn-2 |
| C | 2 n |
| 1 |
| xn-4 |
| C | n-1 n |
| 1 |
| x2-n |
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n-1 n |
½â´ð£º½â£º¢ÙÓÉÃݺ¯ÊýµÄ¶¨ÒåºÍÒÑÖªÌõ¼þ¿ÉµÃm2-2m-3Ϊ¸ºÆæÊý£¬¹ÊÓÐÕýÕûÊým=2£®
ÓÉÓÚº¯Êýf£¨x£©=x2-alnx+m-2ÔÚ£¨1£¬2]ÉÏÊÇÔöº¯Êý£¬¹Êf¡ä£¨x£©=2x-
¡Ý0¶ÔÓÚÇø¼ä£¨1£¬2]ºã³ÉÁ¢£¬¡àa¡Ü2£®
ÓÉg£¨x£©=x-a
ÔÚ£¨0£¬1£©ÉÏΪ¼õº¯Êý£¬¿ÉµÃg¡ä£¨x£©=1-
¡Ü0¶ÔÓÚÇø¼ä£¨0£¬1£©ºã³ÉÁ¢£¬¡àa¡Ý2£®
×ÛÉÏ£¬¿ÉµÃ a=2£®
¢Ú¡ßp£¨x£©=
£¬¡àan+1=
£¬¡à
+
=3£¨
+
£©£¬¹ÊÊýÁÐ{
+
}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ¬ÇÒÊ×ÏîΪ
£®
¡àan+
=
•3n-1£¬¡àan=
£®
ÔÙÓÉ bn=
anan+13n=
=
-
£¬¿ÉµÃ
Sn=b1+b2+b3+¡+bn£¬=£¨
-
£©+£¨
-
£©+£¨
-
£©+¡+£¨
-
£©=
-
£®
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
+
=£¨x2-2lnx£©¡ä-x+2
-2
+
=x+
£¬
µ±n¡Ý2ʱ£¬[h£¨x£©]n-h£¨xn£©=(x+
)n-£¨xn+
£©=
•xn-0•(
)0+
•xn-1•(
)1+
•xn-2•(
)2+¡+
•xn-n•(
)n-£¨xn+
£©
=
•xn-2+
•xn-4+
•xn-6+¡+
•x2-n=
[
£¨xn-2+
£©+
£¨xn-4+
£©+¡+
£¨x2-n+
£©]
¡Ý
+
+
+¡+
=2n-2£¬
ÊԱȽÏ[h£¨x£©]n+2¡Ýh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£®
ÓÉÓÚº¯Êýf£¨x£©=x2-alnx+m-2ÔÚ£¨1£¬2]ÉÏÊÇÔöº¯Êý£¬¹Êf¡ä£¨x£©=2x-
| a |
| x |
ÓÉg£¨x£©=x-a
| x |
| a | ||
2
|
×ÛÉÏ£¬¿ÉµÃ a=2£®
¢Ú¡ßp£¨x£©=
| x |
| x+3 |
| an |
| an+3 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
¡àan+
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3n-1 |
ÔÙÓÉ bn=
| 1 |
| 2 |
| 2¡Á3n |
| (3n-1)(3n+1-1) |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
Sn=b1+b2+b3+¡+bn£¬=£¨
| 1 |
| 3-1 |
| 1 |
| 32-1 |
| 1 |
| 32-1 |
| 1 |
| 33-1 |
| 1 |
| 33-1 |
| 1 |
| 34-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
| 1 |
| 2 |
| 1 |
| 3n+1-1 |
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
| x |
| 3 |
| x |
| x |
| x |
| 3 |
| x |
| 1 |
| x |
µ±n¡Ý2ʱ£¬[h£¨x£©]n-h£¨xn£©=(x+
| 1 |
| x |
| 1 |
| xn |
| C | 0 n |
| 1 |
| x |
| C | 1 n |
| 1 |
| x |
| C | 2 n |
| 1 |
| x |
| C | n n |
| 1 |
| x |
| 1 |
| xn |
=
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n-1 n |
| 1 |
| 2 |
| C | 1 n |
| 1 |
| xn-2 |
| C | 2 n |
| 1 |
| xn-4 |
| C | n-1 n |
| 1 |
| x2-n |
¡Ý
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n-1 n |
ÊԱȽÏ[h£¨x£©]n+2¡Ýh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶þÏîʽ¶¨ÀíµÄÓ¦Óã¬ÓÃÁÑÏî·¨½øÐÐÊýÁÐÇóºÍ£¬Çóº¯ÊýµÄµ¼Êý£¬±È½ÏÁ½¸öʽ×ӵĴóСµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿