题目内容
已知数列{an}的前n项和Sn满足Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3.
(1)求数列{an}、{bn}的通项公式;
(2)设
,数列{cn}的前n项和为Tn,问Tn>
的最小正整数n是多少?
解:(1)当n=1时,a1=S1=2a1-1,∴a1=1…(1分)
当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1)=2an-2an-1,
即
…(3分)
∴数列{an}是以a1=1为首项,2为公比的等比数列,
∴
…(5分)
设{bn}的公差为d,b1=a1=1,b4=1+3d=7,∴d=2
∴bn=1+(n-1)×2=2n-1…(8分)
(2)
…(10分)
∴
…(12分)
由Tn>
,得
>
,解得n>100.1
∴Tn>
的最小正整数n是101…(14分)
分析:(1)利用n=1时,a1=S1,可求a1,当n≥2时,an=Sn-Sn-1,可得数列{an}是以a1=1为首项,2为公比的等比数列,可求数列{an}的通项公式,利用等差数列{bn}满足b1=a1,b4=S3,可求{bn}的通项公式;
(2)利用裂项法求数列的和,结合Tn>
,可求最小正整数n的值.
点评:本题考查数列的通项与求和,考查裂项法的运用,掌握数列通项的特点,选择正确的求和方法是关键.
当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1)=2an-2an-1,
即
∴数列{an}是以a1=1为首项,2为公比的等比数列,
∴
设{bn}的公差为d,b1=a1=1,b4=1+3d=7,∴d=2
∴bn=1+(n-1)×2=2n-1…(8分)
(2)
∴
由Tn>
∴Tn>
分析:(1)利用n=1时,a1=S1,可求a1,当n≥2时,an=Sn-Sn-1,可得数列{an}是以a1=1为首项,2为公比的等比数列,可求数列{an}的通项公式,利用等差数列{bn}满足b1=a1,b4=S3,可求{bn}的通项公式;
(2)利用裂项法求数列的和,结合Tn>
点评:本题考查数列的通项与求和,考查裂项法的运用,掌握数列通项的特点,选择正确的求和方法是关键.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |