题目内容
已知数列满足条件, 则 .
(本小题满分12分)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.
(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率;
(2)检验结束后,甲、乙两名运动员的成绩如下:
甲:,,,,
乙:,,,,
根据两组数据完成图示的茎叶图,并通过计算说明哪位运动员的成绩更稳定.
(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.
(本小题满分10分)【选修4-4:坐标系与参数方程】
在平面直角坐标系xOy中,已知曲线C:为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:=6.
(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(2)过点M(一1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.
椭圆上的点到直线的最大距离是 .
(本小题满分12分)在中,.
(1)求角的大小;
(2)若,,求.
在单位圆上,是两个给定的夹角为的向量,为单位圆上动点,设,且设的最大值为,最小值为,则的值为( )
A.2 B. C.4 D.
设等差数列的前项和为,若,,则当取最小值时,
A. B. C. D.
已知集合,,若,则b等于()
A.1 B.2 C.3 D.1或2