题目内容

如图,平面上两条直线ABAP互相垂直,AB=1,AP=3,D在直线AB上,AD=4,平面上动点M在直线AB上的射影为点N,满足DM=2BN.

(1)求动点M的轨迹C的方程;

(2)若直线y=kx+M(k≠0,M≠0)与点M的轨迹C交于不同的两点EF,且E、F都在以P为圆心的圆上,求实数M的取值范围.

解:(1)以A为原点,AB所在直线为x轴建立平面直角坐标系,则B(1,0),D(4,0),P(0,3),?

M(x,y),则N(x,0),                                                                                                 ?

由|DM|=2|BN|,得=2|x-1|,?

整理得点M的轨迹方程为=1.                                                                    ?

(2)设E(x1,y1),F(x2,y2),?

消去y整理得(3-k2)x2-2kMx-(M2+12)=0.?

依题意得(*)                                                    ?

EF的中点为G(x0,y0),则x0==.?

∵点G在直线y=kx+M上,∴y0=kx0+M=.?

G(,).                                                                                             ?

EF两点都在以P(0,3)为圆心的同一圆上,?

GPEF,即kGP·k=-1.?

·k=-1,整理得k2=.                                                            ?

代入(*)式得?

解得M>0或M<-.                                                                                                  ?

k2=>0,∴M.?

故所求M的取值范围是(-∞,-)∪(0,).      

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网