题目内容
已知数列{an}和{bn}都是等差数列,它们的前n项和分别记为Sn和Tn,且
=
,则
=
.
| Sn | ||
|
| 2n+3 |
| 3n-4 |
| a10 |
| b10 |
| 41 |
| 53 |
| 41 |
| 53 |
分析:直接利用等差数列前n项和的知识,S2n-1=(2n-1)•an,求出
的值.
| a10 |
| b10 |
解答:解:因为等差数列前n项和中,S2n-1=(2n-1)•an,
所以a10=
,b10=
则
=
=
=
故答案为:
所以a10=
| S19 |
| 19 |
| T19 |
| 19 |
则
| a10 |
| b10 |
| S19 |
| T19 |
| 2×19+3 |
| 3×19-4 |
| 41 |
| 53 |
故答案为:
| 41 |
| 53 |
点评:在等差数列中,S2n-1=(2n-1)•an,即中间项的值,等于所有项值的平均数,这是等差数列常用性质之一,希望大家牢固掌握.
练习册系列答案
相关题目