题目内容
已知函数f(x)=2cosxsin(x+
)-
sin2x+sinxcosx
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)当x∈[0,
]时,求f(x)的值域.
| π |
| 3 |
| 3 |
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)当x∈[0,
| π |
| 4 |
f(x)=2cosxsin(x+
)-
(sinx)2+sinxcosx=2cosx(sin
+
cos
)-
+
sin2x
=sinxcosx+
-
+
+
=sin2x+
cos2x
=2sin(2x+
)
(1)因为T=
=
=π,所以函数的最小正周期是π.
(2)y=sinx的单调增区间是[2kπ-
,2kπ+
]k∈Z,则函数f(x)=2cosxsin(x+
)-
sin2x+sinxcosx
即:2sin(2x+
)的单增区间:2x+
∈[2kπ-
,2kπ+
]
解得x∈[kπ-
,kπ+
](k∈Z)
(3)x∈[0,
],则2x+
∈[
,
],所以2sin(2x+
)∈[
,1]
所以函数的值域为:[
,1].
| π |
| 3 |
| 3 |
| x |
| 2 |
| 3 |
| x |
| 2 |
| 3 |
| 1-cos2x |
| 2 |
| 1 |
| 2 |
=sinxcosx+
| 3 |
| 1-cosx |
| 2 |
| ||
| 2 |
| 3 |
| cos2x |
| 2 |
| sin2x |
| 2 |
=sin2x+
| 3 |
=2sin(2x+
| π |
| 3 |
(1)因为T=
| 2π |
| |ω| |
| 2π |
| 2 |
(2)y=sinx的单调增区间是[2kπ-
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
| 3 |
即:2sin(2x+
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
解得x∈[kπ-
| 5π |
| 12 |
| π |
| 12 |
(3)x∈[0,
| π |
| 4 |
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
所以函数的值域为:[
| 1 |
| 2 |
练习册系列答案
相关题目