题目内容

精英家教网如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.
(Ⅰ)证明AC⊥NB;
(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.
分析:(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;
(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.
解答:精英家教网解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.
由已知MN⊥l1,AM=MB=MN,
可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.
∴AC⊥NB
(Ⅱ)∵Rt△CAN≌Rt△CNB,
∴AC=BC,又已知∠ACB=60°,
因此△ABC为正三角形.
∵Rt△ANB≌Rt△CNB,
∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,
连接BH,∠NBH为NB与平面ABC所成的角.
在Rt△NHB中,cos∠NBH=
HB
NB
=
3
3
AB
2
2
AB
=
6
3
点评:本题主要考查了直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网