题目内容
若tan(α+β)=3,tan(β-
)=2,则tan(α+
)=
.
| π |
| 4 |
| π |
| 4 |
| 1 |
| 7 |
| 1 |
| 7 |
分析:由于α+
=(α+β)-(β-
),利用两角差的正切即可求得答案.
| π |
| 4 |
| π |
| 4 |
解答:解:∵tan(α+β)=3,tan(β-
)=2,α+
=(α+β)-(β-
),
∴tan(α+
)
=tan[(α+β)-(β-
]
=
=
=
.
故答案为:
.
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∴tan(α+
| π |
| 4 |
=tan[(α+β)-(β-
| π |
| 4 |
=
tan(α+β)-tan(β-
| ||
1+tan(α+β)tan(β-
|
=
| 3-2 |
| 1+3×2 |
=
| 1 |
| 7 |
故答案为:
| 1 |
| 7 |
点评:本题考查两角和与差的正切函数,考查观察能力与整体代入的意识,属于中档题.
练习册系列答案
相关题目
若tanα+
=
,α∈(
,
),则sin(2α+
)的值为( )
| 1 |
| tanα |
| 10 |
| 3 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
A、-
| ||||
B、
| ||||
C、
| ||||
D、
|