题目内容

已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.
(1)求数列{an}的通项公式;
(2)设数学公式,是否存在m、k(k>m≥2,k,m∈N*),使得b1、bm、bk成等比数列.若存在,求出所有符合条件的m、k的值;若不存在,请说明理由.

解:(1)设等差数列{an}的公差为d,则.(1分)
由已知,得(3分)
解得(5分)
所以an=a1+(n-1)d=n(n∈N*).(6分)
(2)假设存在m、k(k>m≥2,m,k∈N),使得b1、bm、bk成等比数列,
则bm2=b1bk.(7分)
因为,(8分)
所以
所以.(9分)
整理,得.(10分)
因为k>0,所以-m2+2m+1>0.(11分)
解得.(12分)
因为m≥2,m∈N*
所以m=2,此时k=8.
故存在m=2、k=8,使得b1、bm、bk成等比数列.(14分)
分析:(1)设出其首项和公差,直接利用S10=55,S20=210求出首项和公差即可求数列{an}的通项公式;
(2)先求出,再代入b1、bm、bk成等比数列对应的等量关系,求出m、k之间的关系式,再利用题中k>m≥2,k,m∈N*,即可求出对应的m、k的值.
点评:本题第一问主要考查利用等差数列的前n项和求数列{an}的通项公式以及等比关系的确定,是对等差数列,等比数列基础知识的考查.作这一类型题目,一般是设出基本量,利用已知条件列出等量关系,再进行求解即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网