题目内容
求证:不论k为何值,直线l:kx-y-4k+3=0与曲线C:x2+y2-6x-8y+21=0恒有两个交点.
[解析] 解法一:将直线l与曲线C的方程联立,得![]()
消去y,得(1+k2)x2-2(4k2+k+3)x+2(8k2+4k+3)=0.③
∵Δ=4(4k2+k+3)2-8(1+k2)(8k2+4k+3)=12k2-8k+12=12
>0,
∴方程③有两相异实数根,
因而方程组有两个解,即说明直线l与曲线C恒有两交点.
解法二:当k变化时,由l:k(x-4)+3-y=0可知,直线l恒过定点A(4,3),曲线C是半径r=2,圆心为C(3,4)的圆.
∵|AC|=
=
<r,
∴直线l与曲线C恒有两个交点.
练习册系列答案
相关题目