题目内容
在正项等比数列{an}中,a3a7=4,则数列{log2an}的前9项之和为______.
∵{an}是正项等比数列,∴a3a7=a1a9=a2a8=a4a6=a52=4
∴a5=2
S9=log2a1+log2a2+log2a3+log2a4+log2a5+log2a6+log2a7+log2a8+log2a9=log2(a1a2…a9)
=log2[(a3a7)(a1a9)(a2a8)(a4a6)(a5)]=log2(44×2)=log229=9
故答案为9
∴a5=2
S9=log2a1+log2a2+log2a3+log2a4+log2a5+log2a6+log2a7+log2a8+log2a9=log2(a1a2…a9)
=log2[(a3a7)(a1a9)(a2a8)(a4a6)(a5)]=log2(44×2)=log229=9
故答案为9
练习册系列答案
相关题目
在正项等比数列{ an }中,若a2•a4•a6=8,则log2a5-
log2a6=( )
| 1 |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|