题目内容
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:
>2n-3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:
| Sn |
| 2n |
(Ⅰ)∵an=2an-1+2n(n≥2,且n∈N*),
∴
=
+1,即
-
=1(n≥2,且n∈N*),…(3分)
所以,数列{
}是等差数列,公差d=1,首项
,…(5分)
于是
=
+(n-1)d=
+(n-1)•1=n-
,
∴an=(n-
)•2n.…(7分)
(Ⅱ)∵Sn=
•2+
•22+
•23+…+(n-
)•2n,①
∴2Sn=
•22+
•23+
•24+…+(n-
)•2n+1,②…(9分)
①-②,得-Sn=1+22+23+…+2n-(n-
)•2n+1
=2+22+23+…+2n-(n-
)•2n+1-1
=
-(n-
)•2n+1-1
=(3-2n)•2n-3,…(12分)
∴Sn=(2n-3)•2n+3>(2n-3)•2n,
∴
>2n-3.…(14分)
∴
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
| an-1 |
| 2n-1 |
所以,数列{
| an |
| 2n |
| 1 |
| 2 |
于是
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=(n-
| 1 |
| 2 |
(Ⅱ)∵Sn=
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
∴2Sn=
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
①-②,得-Sn=1+22+23+…+2n-(n-
| 1 |
| 2 |
=2+22+23+…+2n-(n-
| 1 |
| 2 |
=
| 2(1-2n) |
| 1-2 |
| 1 |
| 2 |
=(3-2n)•2n-3,…(12分)
∴Sn=(2n-3)•2n+3>(2n-3)•2n,
∴
| Sn |
| 2n |
练习册系列答案
相关题目