题目内容
将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为( )
| A.45° | B.30° | C.60° | D.90° |
由题意画出图形,如图,
设正方形的边长为:2,
折叠前后AD=2,DE=1,连接AC交BD于O,连接OE,则OE=1,AO=
| 2 |
因为正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,
AO⊥BD,所以AO⊥平面BCD,所以AO⊥OE,
在△AOE中,AE=
| AO2+OE2 |
| 3 |
又AD=2,ED=1,所以DE2+AE2=AD2,
所以∠AED=90°.
故选D.
练习册系列答案
相关题目