题目内容

已知函数,

(1)若为奇函数,求的值;

(2)若=1,试证在区间上是减函数;

(3)若=1,试求在区间上的最小值.

 

【答案】

(1)

(2)利用“定义法”证明。在区间上是减函数

(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。

【解析】

试题分析:(1)当时,,若为奇函数,则

,所以

(2)若,则=

设为, =

,∴>0

所以,,因此在区间上是减函数

(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.

 , =

,

所以 ,

因此在区间上上是增函数

因此,在区间上,当时,有最小值,且最小值为2

考点:函数的奇偶性、单调性及其应用

点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。利用定义法研究函数的单调性,要注意遵循“设,作差,变形,定号,结论”等步骤,关键是变形与定号。函数的单调性的基本应用之一是求函数的最值。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网