题目内容

设数列{an}满足a1=1,3(a1+a2+…+an)=(n+2)an,求通项an
设数列{an}的前n项和为Sn
则由3(a1+a2+…+an)=(n+2)an可得3Sn=(n+2)an
∴3Sn-1=(n+1)an-1(n≥2),两式相减,得
3an=(n+2)an-(n+1)an-1
∴(n-1)an=(n+1)an-1,即
an
an-1
=
n+1
n-1
(n≥2).
a2
a1
=
3
1
a3
a2
=
4
2
a4
a3
=
5
3
,…,
an
an-1
=
n+1
n-1
(n≥2),
将以上各式相乘,得
an
a1
=
n(n+1)
2
,又a1=1满足该式式,
∴an=
n(n+1)
2
(n∈N*).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网