题目内容
设数列{an}满足a1=1,3(a1+a2+…+an)=(n+2)an,求通项an.
设数列{an}的前n项和为Sn,
则由3(a1+a2+…+an)=(n+2)an可得3Sn=(n+2)an,
∴3Sn-1=(n+1)an-1(n≥2),两式相减,得
3an=(n+2)an-(n+1)an-1,
∴(n-1)an=(n+1)an-1,即
=
(n≥2).
∴
=
,
=
,
=
,…,
=
(n≥2),
将以上各式相乘,得
=
,又a1=1满足该式式,
∴an=
(n∈N*).
则由3(a1+a2+…+an)=(n+2)an可得3Sn=(n+2)an,
∴3Sn-1=(n+1)an-1(n≥2),两式相减,得
3an=(n+2)an-(n+1)an-1,
∴(n-1)an=(n+1)an-1,即
| an |
| an-1 |
| n+1 |
| n-1 |
∴
| a2 |
| a1 |
| 3 |
| 1 |
| a3 |
| a2 |
| 4 |
| 2 |
| a4 |
| a3 |
| 5 |
| 3 |
| an |
| an-1 |
| n+1 |
| n-1 |
将以上各式相乘,得
| an |
| a1 |
| n(n+1) |
| 2 |
∴an=
| n(n+1) |
| 2 |
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|