题目内容
已知各项均为正数的数列{an}满足:a1=3,
=
(n∈N*),设bn=
,Sn=b12+b22+…+bn2.
(I)求数列{an}的通项公式;
(II)求证:Sn<
.
| an+1+an |
| n+1 |
| 8 |
| an+1-an |
| 1 |
| an |
(I)求数列{an}的通项公式;
(II)求证:Sn<
| 1 |
| 4 |
(I)∵
=
,
∴an+12-an2=8(n+1)
∴an2=(an2-an-12)+(an-12-an-22)+…+(a22-a12)+a12=8[n+(n-1)+…+2]+9=(2n+1)2
∴an=2n+1.…(5分)
(II)
=
=
<
=
(
-
)∴Sn<
[(1-
)+(
-
)+…+(
-
)]=
(1-
)<
…(12分)
| an+1+an |
| n+1 |
| 8 |
| an+1-an |
∴an+12-an2=8(n+1)
∴an2=(an2-an-12)+(an-12-an-22)+…+(a22-a12)+a12=8[n+(n-1)+…+2]+9=(2n+1)2
∴an=2n+1.…(5分)
(II)
| b | 2n |
| 1 | ||
|
| 1 |
| (2n+1)2 |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
练习册系列答案
相关题目