题目内容
(2012•肇庆一模)在△ABC中,角A,B,C的对边分别为a,b,c,B=
,cosA=
,b=
.
(1)求a的值;
(2)求sin(2A-B)的值.
| π |
| 6 |
| 4 |
| 5 |
| 3 |
(1)求a的值;
(2)求sin(2A-B)的值.
分析:(1)由角B求出sinB,由A的余弦值求出正弦值,然后直接利用正弦定理求a的值;
(2)利用二倍角的正弦和余弦公式求出sin2A和cos2A的值,直接展开两角差的正弦公式求sin(2A-B)的值.
(2)利用二倍角的正弦和余弦公式求出sin2A和cos2A的值,直接展开两角差的正弦公式求sin(2A-B)的值.
解答:解:(1)∵A,B,C为△ABC的内角,B=
,cosA=
,b=
∴sinB=sin
=
,sinA=
=
=
.
由正弦定理
=
,得a=
=
=
;
(2)∵B=
,
∴cosB=cos
=
,
又∵cosA=
,sinA=
,
∴sin2A=2sinAcosA=2×
×
=
,
cos2A=2cos2A-1=2×(
)2-1=
,
∴sin(2A-B)=sin2AcosB-cos2AsinB=
×
-
×
=
.
| π |
| 6 |
| 4 |
| 5 |
| 3 |
∴sinB=sin
| π |
| 6 |
| 1 |
| 2 |
| 1-cos2A |
1-(
|
| 3 |
| 5 |
由正弦定理
| a |
| sinA |
| b |
| sinB |
| bsinA |
| sinB |
| ||||
|
6
| ||
| 5 |
(2)∵B=
| π |
| 6 |
∴cosB=cos
| π |
| 6 |
| ||
| 2 |
又∵cosA=
| 4 |
| 5 |
| 3 |
| 5 |
∴sin2A=2sinAcosA=2×
| 3 |
| 5 |
| 4 |
| 5 |
| 24 |
| 25 |
cos2A=2cos2A-1=2×(
| 4 |
| 5 |
| 7 |
| 25 |
∴sin(2A-B)=sin2AcosB-cos2AsinB=
| 24 |
| 25 |
| ||
| 2 |
| 7 |
| 25 |
| 1 |
| 2 |
24
| ||
| 50 |
点评:本题考查了正弦定理,二倍角的正弦和余弦公式,考查了两角和与差的正弦函数,解答的关键是公示的记忆与角范围的确定,是中档题.
练习册系列答案
相关题目