题目内容

如图∠A=90°,∠B=α,AH=h,α,h为常数,AH⊥BC于H,∠AHE=∠AHD=x,问当x取何值时,△DEH的面积最大?并求出最大面积.

【答案】分析:用正弦定理把,△DEH的面积用h,x,α,表示出来,再根据表达式选择方法求最值.本题需要在两三角形△AEH与△ADH中用正弦定理表示出EH与DH两个边.
解答:解:由已知∠EAH=-α,∠DAH=α,∠HEA=π-x-(-α)=+α-x,同理∠ADH=π-α-x
由正弦定理即EH=
同理可得DH=
∴S=×DH×EHsin2x=×××sin2x=×h2××sin2x
=h2×(sin2α-
当sin2x=1时,即当x取时,△DEH的面积最大为h2×(sin2α-
答:当x取时,△DEH的面积最大为h2×(sin2α-
点评:本题考查用三角函数的性质求最值,考查了角的变换、正弦定理、三角形的面积公式,本题充分体现了三角函数解题的特点,公式多,变形灵活.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网