题目内容
已知函数f(x)=sin2x+2
sinxcosx+sin(x+
)sin(x-
),x∈R.
(1)求f(x)的最小正周期和值域;
(2)若x=x0(0≤x0≤
)为f(x)的一个零点,求sin2x0的值.
| 3 |
| π |
| 4 |
| π |
| 4 |
(1)求f(x)的最小正周期和值域;
(2)若x=x0(0≤x0≤
| π |
| 2 |
(1)易得f(x)=sin2x+
sin2x+
(sin2x-cosx2)=
+
sin2x-
cos2x=
sin2x-cos2x+
=2sin(2x-
)+
,
所以f(x)周期π,值域为[-
,
];
(2)由f(x0)=2sin(2x0-
)+
=0,得sin(2x0-
)=-
<0,
又由0≤x0≤
得-
≤2x0-
≤
,
所以-
≤2x0-
≤0,故cos(2x0-
)=
,
此时,sin2x0=sin[(2x0-
)+
]=sin(2x0-
)cos
+cos(2x0-
)sin
=-
×
+
×
=
.
| 3 |
| 1 |
| 2 |
| 1-cos2x |
| 2 |
| 3 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
所以f(x)周期π,值域为[-
| 3 |
| 2 |
| 5 |
| 2 |
(2)由f(x0)=2sin(2x0-
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
又由0≤x0≤
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
所以-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| ||
| 4 |
此时,sin2x0=sin[(2x0-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 4 |
| ||
| 2 |
| ||
| 4 |
| 1 |
| 2 |
| ||||
| 8 |
练习册系列答案
相关题目