题目内容

f(x)=
lnx,x>0
x+
a
0
t2dt,x≤0
,若f{f[f(e)]}=9,则a=
3
3
分析:根据分段函数的定义分别代入,解方程即可.
解答:解:∵f(e)=lne=1,
∴f[f(e)]=f(1)=ln1=0,
∴f{f[f(e)]}=f(0)=
a
0
t2dt
=
1
3
t3
|
a
0
=
1
3
a3=9,
∴a3=27,
解得a=3.
故答案为:3.
点评:本题主要考查分段函数的求值,以及积分的计算,要注意变量取值的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网