题目内容

已知函数f(x)=数学公式,g(x)=数学公式ax3-a2x(a>0)
(1)求曲线y=f(x)在原点处的切线方程;
(2)求函数y=g(x)的极大值和极小值.

解:(1)令x=0,则切线的斜率k=f'(0)=12
∴切线方程为y=12x
(2)g'(x)=ax2-a2=a(x-)(x+
∴y=g(x)在(-)上为单调减函数,在(-∞,)和(,+∞)上为单调递增函数
∴x=,y=g(x)有极大值g(-)=
x=,y=g(x)有极小值g()=-
分析:(1)根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再用点斜式写出化简;
(2)求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值点,代入函数求出极值.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的极值等基础题知识,考查运算求解能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网