题目内容
若tan(α+β)=
,tan(β-
)=
,则tan(α+
)=______.
| 2 |
| 5 |
| π |
| 4 |
| 1 |
| 4 |
| π |
| 4 |
因为α+
=[(α+β)-(β-
)],且tan(α+β)=
,tan(β-
)=
,
则根据两角差的正切函数的公式得:
tan(α+
)=tan[(α+β)-(β-
)]
=
=
=
故答案为
| π |
| 4 |
| π |
| 4 |
| 2 |
| 5 |
| π |
| 4 |
| 1 |
| 4 |
则根据两角差的正切函数的公式得:
tan(α+
| π |
| 4 |
| π |
| 4 |
=
tan(α+β)-tan(β-
| ||
1+tan(α+β)tan(β-
|
| ||||
1+
|
| 3 |
| 22 |
故答案为
| 3 |
| 22 |
练习册系列答案
相关题目
若tanα+
=
,α∈(
,
),则sin(2α+
)的值为( )
| 1 |
| tanα |
| 10 |
| 3 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
A、-
| ||||
B、
| ||||
C、
| ||||
D、
|