题目内容

已知f(x)=ax2+bx+c,且当|x|≤1时,|f(x)|≤1,求证:
(1)|c|≤1;
(2)|b|≤1.
分析:利用二次函数的图象和性质分别判断和证明.
解答:解:(1)由|f(0)|≤1,得|c|≤1.
(2)由|f(1)|≤1,得|a+b+c|≤1,
由|f(-1)|≤1,得|a-b+c|≤1,
∴|b|=
|(a+b+c)+(-a+b-c)|
2

1
2
(|a+b+c|+|a-b+c|)≤1.
点评:本题主要考查二次函数的图象和性质,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网