题目内容
【题目】f(n)=1+
+
+…+
(n∈N*),计算可得f(2)=
,f(4)>2,f(8)>
,f(16)>3,f(32)>
,推测当n≥2时,有 .
【答案】f(2n)≥ ![]()
【解析】解:已知的式子f(2)=
, f(4)>2,
f(8)>
,
f(16)>3,
f(32)>
,…
可化为:f(2)=
,
f(22)>
,
f(23)>
,
f(24)>
,
f(25)>
,
…
以此类推,可得f(2n)≥
;
所以答案是:f(2n)≥
【考点精析】根据题目的已知条件,利用归纳推理的相关知识可以得到问题的答案,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.
练习册系列答案
相关题目