题目内容
设函数f(x)=cos(2x+| π |
| 3 |
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=
| 1 |
| 3 |
| C |
| 2 |
| 1 |
| 4 |
分析:(Ⅰ)利用两角和的余弦公式化简函数f(x)为
-
sin2x,可得最大值为
+
,最小正周期 T=
.
(Ⅱ)由f(
)=-
求得C=
,由cosB=
求得 sinB,利用sinA=sin(B+C)=sinBcosC+cosBsinC 求出结果.
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 2π |
| ω |
(Ⅱ)由f(
| C |
| 2 |
| 1 |
| 4 |
| π |
| 3 |
| 1 |
| 3 |
解答:解:(Ⅰ)f(x)=cos(2x+
)+sin2x=
cos2x -
sin2x+
=
-
sin2x,
故函数f(x)的最大值为
+
,最小正周期 T=
=π.
(Ⅱ)f(
)=
-
sinC=-
,∴sinC=
,又C为锐角,故C=
.
∵cosB=
,∴sinB=
.∴sinA=sin(B+C)=sinBcosC+cosBsinC=
×
+
×
=
.
| π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1-cos2x |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
故函数f(x)的最大值为
| 1 |
| 2 |
| ||
| 2 |
| 2π |
| ω |
(Ⅱ)f(
| C |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 4 |
| ||
| 2 |
| π |
| 3 |
∵cosB=
| 1 |
| 3 |
2
| ||
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| ||
| 2 |
2
| ||||
| 6 |
点评:本题考查两角和的余弦公式、正弦公式的应用,求出角C是解题的关键.
练习册系列答案
相关题目