题目内容
已知函数 f(x)=ax+x-b的零点xb∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是( )
| A.-2 | B.-1 | C.0 | D.1 |
∵2a=3,3b=2,∴a=log23,b=log32,
∴函数f(x)=(log23)x+x-log32,且函数是R上的增函数,
而f(-1)=-1<0,f(0)=1-log32>0,
∴函数f(x)=(log23)x+x-log32在(-1,0)内有一个零点,
故n=-1,
故选B.
∴函数f(x)=(log23)x+x-log32,且函数是R上的增函数,
而f(-1)=-1<0,f(0)=1-log32>0,
∴函数f(x)=(log23)x+x-log32在(-1,0)内有一个零点,
故n=-1,
故选B.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|