题目内容
已知等比数列{an}中,a2=2,a5=128,
(1)求数列{an}的通项公式
(2)若bn=log2an,求数列{bn}的前n项和Sn
(3)设Tn=
+
+
+…+
,求Tn.
(1)求数列{an}的通项公式
(2)若bn=log2an,求数列{bn}的前n项和Sn
(3)设Tn=
| S1 |
| 1 |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
(1)设公比为q,依题意
解得a1=
,q=4
∴an=
×4n-1=22n-3 (n∈N*)
(2)bn=log2an=log2(22n-3)=2n-3
∴数列{bn}为首项为-1,公差为2的等差数列
∴Sn=
=n(n-2)
(3)∵
=
=n-2
∴Tn=
+
+
+…+
=(1-2)+(2-2)+(3-2)+…+(n-2)=
=
|
解得a1=
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
(2)bn=log2an=log2(22n-3)=2n-3
∴数列{bn}为首项为-1,公差为2的等差数列
∴Sn=
| n(-1+2n-3) |
| 2 |
(3)∵
| Sn |
| n |
| n(n-2) |
| n |
∴Tn=
| S1 |
| 1 |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| n(-1+n-2) |
| 2 |
| n(n-3) |
| 2 |
练习册系列答案
相关题目