题目内容

某兴趣小组的3名指导老师和7名同学站成前后两排合影,3名指导老师站在前排,7名同学站在后排.求若甲,乙两名同学不能相邻,共有多少种不同的排法?
求甲,乙两名同学不能相邻的排法,考虑到用插空法,把其他4名同学的前后位置放甲乙即可满足甲乙不相邻.
即甲乙有A62再乘以5个同学的排列A55,即第2排的排法.
第一排的排法为A33
所以共有A62?A55?A33=21600种排法,
所以答案为21600.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网