题目内容
若直线
不平行于平面
,且
,则( )
A.
内的所有直线与
异面
B.
内不存在与
平行的直线
C.
内存在唯一的直线与
平行
D.
内的直线与
都相交
【答案】
B
【解析】
试题分析:因为直线
不平行于平面
,且
,所以直线
与平面
相交,所以直线
与
内的任意一条直线都不平行,如若不然,如果
内有直线与
平行,且
,所以
与平面
平行,与题设矛盾.
考点:本小题主要考查空间中直线与直线、直线与平面的位置关系的判断,考查学生的逻辑推理能力和空间想象能力.
点评:点线面的位置关系的判定和应用是立体几何的理论基础,要熟练掌握点、线、面位置关系的判定定理和性质定理并灵活运用.
练习册系列答案
相关题目