题目内容
已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*).
(1)求数列{an}的通项an;
(2)若数列{bn}的满足bn=log2(an+2),Tn为数列{
}的前n项和,求证:Tn≥
.
(1)求数列{an}的通项an;
(2)若数列{bn}的满足bn=log2(an+2),Tn为数列{
| bn |
| an+2 |
| 1 |
| 2 |
(1)当n∈N*时,Sn=2an-2n①,则当n≥2时,Sn-1=2an-1-2(n-1)②,
①-②,得an=2an-2an-1-2,即an=2an-1+2,
∴an+2=2(an-1+2),∴
=2,
当n=1时,S1=2a1-2,则a1=2.
∴{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4•2n-1,∴an=2n+1-2;
(2)证明:bn=log2(an+2)=log22n+1=n+1,∴
=
,
则Tn=
+
+…+
③,
Tn=
+
+…+
+
…④,
③-④,得
Tn=
+
+
+…+
-
=
+
-
=
-
,
∴Tn=
-
.
当n≥2时,Tn-Tn-1=-
+
=
>0,
∴{Tn}为递增数列,∴Tn≥T1=
.
①-②,得an=2an-2an-1-2,即an=2an-1+2,
∴an+2=2(an-1+2),∴
| an+2 |
| an-1+2 |
当n=1时,S1=2a1-2,则a1=2.
∴{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4•2n-1,∴an=2n+1-2;
(2)证明:bn=log2(an+2)=log22n+1=n+1,∴
| bn |
| an+2 |
| n+1 |
| 2n+1 |
则Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
| n+1 |
| 2n+2 |
③-④,得
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+2 |
| 3 |
| 4 |
| n+3 |
| 2n+2 |
∴Tn=
| 3 |
| 2 |
| n+3 |
| 2n+1 |
当n≥2时,Tn-Tn-1=-
| n+3 |
| 2n+1 |
| n+2 |
| 2n |
| n+1 |
| 2n+1 |
∴{Tn}为递增数列,∴Tn≥T1=
| 1 |
| 2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |