题目内容

已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an) (n∈N*)是首项为4,公差为2的等差数列.

(1)设a为常数,求证:{an}成等比数列;

(2)若bn=anf(an),{bn}的前n项和是Sn,当a=时,求Sn.

(1)证明见解析(2)Sn=n·2n+3


解析:

(1)证明  f(an)=4+(n-1)×2=2n+2,

即logaan=2n+2,                                                   2分

可得an=a2n+2.

===a2(n≥2)为定值.                              4分

∴{an}为等比数列.                                                      6分

(2)解  bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2.

当a=时,bn=(2n+2)()2n+2=(n+1)2n+2.                                8分

Sn=2·23+3·24+4·25+…+(n+1)·2n+2                             ①

2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3                      ②

①-②得

-Sn=2·23+24+25+…+2n+2-(n+1)·2n+3

=16+-(n+1)2n+3

=16+2n+3-24-n·2n+3-2n+3=-n·2n+3.

∴Sn=n·2n+3.                                                  14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网