题目内容
从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲:7 8 6 8 6 5 9 10 7 4
乙:9 5 7 8 7 6 8 67 7
(1)计算甲、乙两人射击命中环数的平均数和标准差;
(2)比较两人的成绩,然后决定选择哪一个人参赛.
分析:数据x1,x2,…,xn的平均数
.
标准差s=
.
根据公式计算得平均数和标准差,分析甲、乙两人成绩的集中趋势和离散程度,从而选择一人参赛.
解:(1)计算得
=7,
=7,
≈1.73,
≈1.10.
(2)由(1)可知,甲、乙两人的平均成绩相等,但
<
,这表明乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,选择乙参赛.
绿色通道
对于常用的平均数、方差、标准差的公式要能够熟练记忆,不能将公式记错,造成计算上的失误,使得统计的结果失去真实的意义.另外应用求得的标准差的结论时要特别注意标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.
练习册系列答案
相关题目