题目内容
(2012•桂林模拟)已知数列{an}是正项数列,其首项a1=3,前n项和为Sn,4Sn=
+2an+4(n≥2).
(1)求数列{an}的第二项a2及通项公式;
(2)设bn=
,记数列{bn}的前n项和为Kn,求证:Kn<
.
| a | 2 n |
(1)求数列{an}的第二项a2及通项公式;
(2)设bn=
| 1 |
| Sn |
| 17 |
| 21 |
分析:(1)由题设知S2=(
)2+
+1,解得a2=4,由Sn=(
)2+
+1,n≥2,得Sn-1=(
)2+
+1,n≥3,由此能求出数列{an}的第二项a2及通项公式
(2)由Sn=n2+n+1,知bn=
=
<
=
-
,利用裂项求和法能够证明Kn<
.
| a2 |
| 2 |
| a2 |
| 2 |
| an |
| 2 |
| an |
| 2 |
| an-1 |
| 2 |
| an-1 |
| 2 |
(2)由Sn=n2+n+1,知bn=
| 1 |
| Sn |
| 1 |
| n2+n+1 |
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
| 17 |
| 21 |
解答:解:(1)∵数列{an}是正项数列,其首项a1=3,
前n项和为Sn,4Sn=
+2an+4(n≥2),
∴S2=(
)2+
+1,
∴3+a2=(
)2+
+1,
解得a2=4,或a2=-2(舍),
由Sn=(
)2+
+1,n≥2,
得Sn-1=(
)2+
+1,n≥3,
两式相减,得:(
)•(
-1)=0,n≥3,
∴an-an-1=2,n≥3,
∴an=
.
(2)∵Sn=n2+n+1,
∴bn=
=
<
=
-
,
∴kn≤
+
+(
-
)+(
-
)+(
-
)+…+(
-
)
=
+
+(
-
)
<
+
+
<
.
前n项和为Sn,4Sn=
| a | 2 n |
∴S2=(
| a2 |
| 2 |
| a2 |
| 2 |
∴3+a2=(
| a2 |
| 2 |
| a2 |
| 2 |
解得a2=4,或a2=-2(舍),
由Sn=(
| an |
| 2 |
| an |
| 2 |
得Sn-1=(
| an-1 |
| 2 |
| an-1 |
| 2 |
两式相减,得:(
| an+an-1 |
| 2 |
| an-an-1 |
| 2 |
∴an-an-1=2,n≥3,
∴an=
|
(2)∵Sn=n2+n+1,
∴bn=
| 1 |
| Sn |
| 1 |
| n2+n+1 |
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
∴kn≤
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 3 |
| 1 |
| n |
<
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 3 |
<
| 17 |
| 21 |
点评:本题考查数列的通项公式和前n项和公式的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意错位相减法的合理运用.
练习册系列答案
相关题目