题目内容
数列{an}(n∈N•)中,an=
,则数列{an}的前10项的和为
.
| 1 |
| (2n-1)(2n+1) |
| 10 |
| 21 |
| 10 |
| 21 |
分析:利用裂项法,将an=
转化为an=
(
-
)再累加求和即可.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:∵an=
=
(
-
),
∴数列{an}的前10项的和S10=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
故答案为:
.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{an}的前10项的和S10=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 19 |
| 1 |
| 21 |
=
| 1 |
| 2 |
| 1 |
| 21 |
=
| 10 |
| 21 |
故答案为:
| 10 |
| 21 |
点评:本题考查数列的求和,着重考查裂项法,将an=
转化为an=
(
-
)是关键,属于中档题.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
练习册系列答案
相关题目