题目内容
(2012•德州一模)已知数列{an}的前n项和为Sn,满足Sn+2n=2an.
(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足bn=log2(an+2),求数列{
}的前n项和Tn.
(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足bn=log2(an+2),求数列{
| 1 | bn |
分析:(I)由Sn+2n=2an,得Sn=2an-2n,由此利用构造法能够证明数列{an+2}是等比数列,并求出数列{an}的通项公式an.
(Ⅱ)由an=2n+1-2,得
=
=
-
,由此利用错位相减法能够求出数列{
}的前n项和Tn.
(Ⅱ)由an=2n+1-2,得
| 1 |
| bn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| bn |
解答:(I)证明:由Sn+2n=2an,得Sn=2an-2n,
当n∈N*时,Sn=2an-2n,①
当n=1时,S1=2a1-2,则a1=2,
当n≥2时,Sn-1=2an-1-2(n-1),②
①-②,得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2),
∴
=2,
∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,
∴an=2n+1-2.
(Ⅱ)解:∵an=2n+1-2,
∴bn=n(n+1),
∴
=
=
-
,
∴Tn=
+
+…+
=1-
+
-
+…+
-
=1-
=
.
当n∈N*时,Sn=2an-2n,①
当n=1时,S1=2a1-2,则a1=2,
当n≥2时,Sn-1=2an-1-2(n-1),②
①-②,得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2),
∴
| an+2 |
| an-1+2 |
∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,
∴an=2n+1-2.
(Ⅱ)解:∵an=2n+1-2,
∴bn=n(n+1),
∴
| 1 |
| bn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
点评:本题考查等比数列的证明,考查数列的通项公式和前n项和的求法,解题时要认真审题,注意构造法和错位相减法的合理运用.
练习册系列答案
相关题目