题目内容

(2012•德州一模)已知数列{an}的前n项和为Sn,满足Sn+2n=2an
(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足bn=log2(an+2),求数列{
1bn
}的前n项和Tn
分析:(I)由Sn+2n=2an,得Sn=2an-2n,由此利用构造法能够证明数列{an+2}是等比数列,并求出数列{an}的通项公式an
(Ⅱ)由an=2n+1-2,得
1
bn
=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用错位相减法能够求出数列{
1
bn
}的前n项和Tn
解答:(I)证明:由Sn+2n=2an,得Sn=2an-2n,
当n∈N*时,Sn=2an-2n,①
当n=1时,S1=2a1-2,则a1=2,
当n≥2时,Sn-1=2an-1-2(n-1),②
①-②,得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2),
an+2
an-1+2
=2

∴{an+2}是以a1+2为首项,以2为公比的等比数列.
an+2=4•2n-1
an=2n+1-2
(Ⅱ)解:∵an=2n+1-2
∴bn=n(n+1),
1
bn
=
1
n(n+1)
=
1
n
-
1
n+1

Tn=
1
b1
+
1
b2
+…+
1
bn

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
点评:本题考查等比数列的证明,考查数列的通项公式和前n项和的求法,解题时要认真审题,注意构造法和错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网