题目内容
设{an}是公差不为0,且各项均为正数的等差数列,则
- A.a1·a8>a4·a5
- B.a1·a8<a4·a5
- C.a1·a8=a4·a5
- D.以上答案均可能
B
解:因为设{an}是公差不为0,且各项均为正数的等差数列,则利用通项公式可知:设此等差数列的公差为d,则a8=a1+7d,a4=a1+3d,a5=a1+4d,
则a1•a8=a12+7a1d,a4•a5=a12+7a1d+12d2,又d≠0,数列an各项均为正数,
则a1•a8=a12+7a1d<a4•a5=a12+7a1d+12d2,
故选A
解:因为设{an}是公差不为0,且各项均为正数的等差数列,则利用通项公式可知:设此等差数列的公差为d,则a8=a1+7d,a4=a1+3d,a5=a1+4d,
则a1•a8=a12+7a1d,a4•a5=a12+7a1d+12d2,又d≠0,数列an各项均为正数,
则a1•a8=a12+7a1d<a4•a5=a12+7a1d+12d2,
故选A
练习册系列答案
相关题目
设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、n2+n |