题目内容

设函数f(x)=x2-1+cosx(a>0),
(1)当a=1时,证明:函数y=f(x)在(0,+∞)上是增函数;
(2)若y=f(x)在(0,+∞)上是单调增函数,求正数a的范围;
(3)在(1)的条件下,设数列{an}满足:0<a1<1,且an+1=f(an),求证:0<an+1<an<1。
解:(1)当a=1时,
恒成立,
∴y=g(x)在(0,+∞)上是增函数,g(x)>g(0)=0,
即函数y=f(x)在(0,+∞)上是增函数;
(2)由,得h(x)=f′(x)=ax-sinx,
若y=f(x)在(0,+∞)上是单调增函数,则f′(x)=ax-sinx≥0恒成立,
当a≥1,恒有ax≥x≥sinx,此时f′(x)=ax-sinx≥0,
∴y=f(x)在(0,+∞)上是单调增函数;
当0<a<1时,h′(x)=a-cosx=0,得cosx=a,在上存在x0,使得cosx0=a;
当x∈(0,x0)时,h′(x)=a-cosx<0,h(x)在(0,x0)上是减函数,
h(x)=f′(x)<f′(0)=0,
这与,f′(x)=ax-sinx≥0恒成立矛盾,
∴a≥1;
(3)由(1)当0<x<1,0=f(0)<f(x)<f(1)=
当0<a1<1,a=f(a1)∈(0,1),
假设0<ak<1,
则ak+1=


,即
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网