题目内容

数列{an}的前n项和数学公式,那么它的通项公式是


  1. A.
    an=2n-1
  2. B.
    an=2n+1
  3. C.
    an=4n-1
  4. D.
    an=4n+1
C
分析:首先根据Sn=2n2+n求出a1的值,然后利用an=Sn-Sn-1求出当n≥2时an的表达式,然后验证a1的值是否适合,最后写出an的通项公式即可.
解答:∵Sn=2n2+n,∴a1=2×12+1=3,
当n≥2时,an=Sn-Sn-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,
把n=1代入上式可得a1=3,即也符合,
故通项公式为:an=4n-1,
故选C
点评:本题考查数列递推公式,利用an=Sn-Sn-1(n≥2)是解答本题的关键,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网