题目内容
4.在圆C:(x-2)2+(y-2)2=8内,过点P(1,0)的最长的弦为AB,最短的弦为DE,则四边形ADBE的面积为4$\sqrt{6}$.分析 由圆的知识可知过(1,0)的最长弦为直径,最短弦为过(1,0)且垂直于该直径的弦,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.
解答 解:圆的标准方程为(x-2)2+(y-2)2=8,
由题意得最长的弦|AB|=4$\sqrt{2}$,
圆心(2,2),圆心与点(1,0)的距离d=$\sqrt{1+4}$=$\sqrt{5}$,
根据勾股定理得最短的弦|DE|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{8-5}$=2$\sqrt{3}$,且AB⊥DE,
四边形ABCD的面积S=$\frac{1}{2}$|AB|•|DE|=$\frac{1}{2}$×4$\sqrt{2}$×2$\sqrt{3}$=4$\sqrt{6}$,
故答案为:4$\sqrt{6}$.
点评 本题考查学生灵活运用几何知识决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半是解决问题的关键,属中档题.
练习册系列答案
相关题目
14.在一次数学测试中,甲、乙两个小组各12人的成绩如下表:(单位:分)
若成绩在90分以上(包括90分)的等级记为“优秀”,其余的等级都记为“合格”.
(Ⅰ)在以上24人中,如果按等级用分层抽样的方法从中抽取6人,再从这6人中随机选出2人,求选出的2人中至少有一人等级为“优秀”的概率;
(Ⅱ)若从所有等级为“优秀”的人当中选出3人,用X表示其中乙组的人数,求随机变量X的分布列和的数学期望.
| 甲组 | 91 | 86 | 82 | 75 | 93 | 90 | 68 | 82 | 76 | 94 | 92 | 64 |
| 乙组 | 77 | 84 | 95 | 81 | 98 | 69 | 72 | 88 | 93 | 65 | 70 | 85 |
(Ⅰ)在以上24人中,如果按等级用分层抽样的方法从中抽取6人,再从这6人中随机选出2人,求选出的2人中至少有一人等级为“优秀”的概率;
(Ⅱ)若从所有等级为“优秀”的人当中选出3人,用X表示其中乙组的人数,求随机变量X的分布列和的数学期望.
19.函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的零点个数是( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
14.已知两个不共线的向量$\overrightarrow{α}$,$\overrightarrow{β}$满足|$\overrightarrow{α}$|=3,|$\overrightarrow{α}$+$\overrightarrow{β}$|=2|$\overrightarrow{α}$-$\overrightarrow{β}$|,设$\overrightarrow{α}$,$\overrightarrow{β}$的夹角为θ,则cosθ的最小值是( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |