题目内容
| a |
| 2 |
A、1-
| ||
B、
| ||
C、1-
| ||
| D、与a的取值有关 |
分析:欲求击中阴影部分的概率,则可先求出击中阴影部分的概率对应的平面区域的面积,再根据几何概型概率公式易求解.
解答:解:利用几何概型求解,
图中阴影部分的面积为:
a2-π×(
)2,
则他击中阴影部分的概率是:
P=
=1-
,
故选A.
图中阴影部分的面积为:
a2-π×(
| a |
| 2 |
则他击中阴影部分的概率是:
P=
a2-π(
| ||
| a2 |
| π |
| 4 |
故选A.
点评:本题主要考查了几何图形的面积、几何概型.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关题目