题目内容

17.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是$±\sqrt{3}$.

分析 由抛物线方程求出抛物线的焦点坐标,设出直线l的方程,和抛物线方程联立,化为关于y的一元二次方程后利用根与系数的关系得到A,B两点纵坐标的和与积,结合|AF|=3|BF|,转化为关于直线斜率的方程求解.

解答 解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),
∴设直线l方程为y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去x得$\frac{k}{4}{y}^{2}-y-k=0$.
设A(x1,y1),B(x2,y2),
可得y1+y2=$\frac{4}{k}$,y1y2=-4①.
∵|AF|=3|BF|,
∴y1+3y2=0,可得y1=-3y2,代入①得-2y2=$\frac{4}{k}$,且-3y22=-4,
消去y2得k2=3,解之得k=±$\sqrt{3}$.
故答案为:$±\sqrt{3}$.

点评 本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网