题目内容
(2012•东城区模拟)数列{an}满足an+an+1=
(n∈N*),a1=-
,Sn是{an}的前n项和,则S2011=
| 1 |
| 2 |
| 1 |
| 2 |
502
502
.分析:由已知可知S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011),结合已知可求数列的和
解答:解:∵an+an+1=
(n∈N*),a1=-
,
S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)
=-
+
+…+
=-
+
×1005
=502
故答案为:502
| 1 |
| 2 |
| 1 |
| 2 |
S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)
=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=-
| 1 |
| 2 |
| 1 |
| 2 |
=502
故答案为:502
点评:本题主要考查了数列的和的求解,解题的关键是根据已知考虑两两结合为常数.
练习册系列答案
相关题目