题目内容
(2011•资中县模拟)已知数列{an}满足a1=2,an+1=2an-n+1(n∈N+).
(1)证明数列{an-n}是等比数列,并求出数列{an}的通项公式;
(2)数列{bn}满足:bn=
(n∈N+),求数列{bn}的前n项和Sn;
(3)比较Sn与
的大小.
(1)证明数列{an-n}是等比数列,并求出数列{an}的通项公式;
(2)数列{bn}满足:bn=
| n |
| 2an-2n |
(3)比较Sn与
| 3n |
| 2n+1 |
分析:(1)法一:由an+1=2an-n+1,得an+1-(n+1)=2(an-n),又a1=2,则a1-1=1,由此能够证明数列{an-n}是等比数列,并能求出数列{an}的通项公式.
法二:
=
=2,又a1=2,则a1-1=1,由此能够证明数列{an-n}是等比数列,并能求出数列{an}的通项公式.
(2)由bn=
,知bn=
=
,故Sn=
+2•(
)2+…+n•(
)n,由错位相减法能够求出数列{bn}的前n项和Sn.
(3)Sn-
=
,当n=1时,Sn<
;n=2时,Sn<
;n≥3时,Sn-
>0,由此知n=1或2时,Sn<
;n≥3时,Sn>
.
法二:
| an+1-(n+1) |
| an-n |
| 2an-n+1-(n+1) |
| an-n |
(2)由bn=
| n |
| 2an-2n |
| n |
| 2an-2n |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)Sn-
| 3n |
| 2n+1 |
| (n+2)•[2n-(2n+1)] |
| (2n+1)•2n |
| 3n |
| 2n+1 |
| 3n |
| 2n+1 |
| 3n |
| 2n+1 |
| 3n |
| 2n+1 |
| 3n |
| 2n+1 |
解答:(1)证法一:由an+1=2an-n+1,
得an+1-(n+1)=2(an-n),
又a1=2,则a1-1=1,
∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)
则an-n=1×2n-1,
∴an=2n-1+n.…(4分)
证法二:
=
=
=2,
又a1=2,则a1-1=1,
∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)
则an-n=1×2n-1,∴an=2n-1+n.…(4分)
(2)解:∵bn=
,
∴bn=
=
.…(5分)
∴Sn=b1+b2+…+bn
=
+2•(
)2+…+n•(
)n,…①
∴
Sn=(
)2+2•(
)3+…+(n-1)•(
)n+n•(
)n+1,…②
由①-②,得
Sn=
+(
)2+…+(
)2-n•(
)n+1
=
-n•(
)n+1
=1-(n+2)(
)n+1,…(8分)
∴Sn=2-(n+2)•(
)n.…(9分)
(3)Sn-
=2-(n+2)•(
)n-
=
-(n+2)•(
)n
=
,
当n=1时,Sn<
;
n=2时,Sn<
;
n≥3时,2n=
+
+…+
+
>
+
+
=2n+1,
∴Sn-
>0,
∴Sn>
.
综上:n=1或2时,Sn<
;
n≥3时,Sn>
.…(12分)
得an+1-(n+1)=2(an-n),
又a1=2,则a1-1=1,
∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)
则an-n=1×2n-1,
∴an=2n-1+n.…(4分)
证法二:
| an+1-(n+1) |
| an-n |
| 2an-n+1-(n+1) |
| an-n |
=
| 2an-2n |
| an-n |
又a1=2,则a1-1=1,
∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)
则an-n=1×2n-1,∴an=2n-1+n.…(4分)
(2)解:∵bn=
| n |
| 2an-2n |
∴bn=
| n |
| 2an-2n |
| n |
| 2n |
∴Sn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 2 |
=1-(n+2)(
| 1 |
| 2 |
∴Sn=2-(n+2)•(
| 1 |
| 2 |
(3)Sn-
| 3n |
| 2n+1 |
| 1 |
| 2 |
| 3n |
| 2n+1 |
=
| n+2 |
| 2n+1 |
| 1 |
| 2 |
=
| (n+2)•[2n-(2n+1)] |
| (2n+1)•2n |
当n=1时,Sn<
| 3n |
| 2n+1 |
n=2时,Sn<
| 3n |
| 2n+1 |
n≥3时,2n=
| C | 0 n |
| C | 1 n |
| C | n-1 n |
| C | n n |
>
| C | 0 n |
| C | 1 n |
| C | n-1 n |
∴Sn-
| 3n |
| 2n+1 |
∴Sn>
| 3n |
| 2n+1 |
综上:n=1或2时,Sn<
| 3n |
| 2n+1 |
n≥3时,Sn>
| 3n |
| 2n+1 |
点评:本题考查等差数列的证明和数列的通项公式的求法,考查数列的前n项和的求法和不等式的比较.考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目