ÌâÄ¿ÄÚÈÝ
£¨2011•˳ÒåÇø¶þÄ££©ÒÑÖªÍÖÔ²CµÄ×ó£¬ÓÒ½¹µã×ø±ê·Ö±ðΪF1(-
£¬0)£¬F2(
£¬0)£¬ÀëÐÄÂÊÊÇ
£®ÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã·Ö±ð¼ÇΪA£¬B£®µãSÊÇÍÖÔ²CÉÏλÓÚxÖáÉÏ·½µÄ¶¯µã£¬Ö±ÏßAS£¬BSÓëÖ±Ïßl£ºx=-
·Ö±ð½»ÓÚM£¬NÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÏß¶ÎMN³¤¶ÈµÄ×îСֵ£»
£¨3£©µ±Ïß¶ÎMNµÄ³¤¶È×îСʱ£¬ÔÚÍÖÔ²CÉϵÄTÂú×㣺Tµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
£¬ÊÔÈ·¶¨µãTµÄ¸öÊý£®
| 3 |
| 3 |
| ||
| 2 |
| 10 |
| 3 |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÏß¶ÎMN³¤¶ÈµÄ×îСֵ£»
£¨3£©µ±Ïß¶ÎMNµÄ³¤¶È×îСʱ£¬ÔÚÍÖÔ²CÉϵÄTÂú×㣺Tµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
| ||
| 4 |
·ÖÎö£º£¨1£©ÒòΪ
=
£¬ÇÒc=
£¬ËùÒÔa=2£¬b=
=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2 £©ÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã×ø±êΪA£¨-2£¬0£©£¬B£¨2£¬0£©£¬ÉèÖ±ÏßASµÄ·½³ÌΪy=k£¨x+2£©£¬´Ó¶øM(-
£¬-
k)
ÓÉ
£¬µÃ£¨1+4k2£©x2+16k2x+16k2-4=0£¬ÓÉ´ËÈëÊÖÄܹ»Çó³öÏß¶ÎMNµÄ³¤¶ÈµÄ×îСֵ£®
£¨3£©ÓÉ£¨2£©Öª£¬µ±Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵʱ£¬k=1£¬´ËʱASµÄ·½³ÌΪx-y+2=0£¬S(-
£¬
)£¬ÒòΪµãTµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
£¬ËùÒÔµãTÔÚÆ½ÐÐÓÚASÇÒÓëAS¾àÀëµÈÓÚ
µÄÖ±Ïßl¡äÉÏ£®Éèl¡ä£ºx-y+t=0£¬ÔòÓÉ
=
£¬½âµÃt=
»òt=
£®ÓÉ´ËÈëÊÖÄÜÇó³öËùÇóµãTµÄ¸öÊý£®
| c |
| a |
| ||
| 2 |
| 3 |
| a2-c2 |
£¨2 £©ÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã×ø±êΪA£¨-2£¬0£©£¬B£¨2£¬0£©£¬ÉèÖ±ÏßASµÄ·½³ÌΪy=k£¨x+2£©£¬´Ó¶øM(-
| 10 |
| 3 |
| 4 |
| 3 |
ÓÉ
|
£¨3£©ÓÉ£¨2£©Öª£¬µ±Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵʱ£¬k=1£¬´ËʱASµÄ·½³ÌΪx-y+2=0£¬S(-
| 6 |
| 5 |
| 4 |
| 5 |
| ||
| 4 |
| ||
| 4 |
| |t-2| | ||
|
| ||
| 4 |
| 3 |
| 2 |
| 5 |
| 2 |
½â´ð£º½â£º£¨1£©ÒòΪ
=
£¬ÇÒc=
£¬ËùÒÔa=2£¬b=
=1
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
+y2=1¡£®£¨3·Ö£©
£¨2 £© Ò×ÖªÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã×ø±êΪA£¨-2£¬0£©£¬B£¨2£¬0£©£¬Ö±ÏßASµÄбÂÊkÏÔÈ»´æÔÚ£¬ÇÒk£¾0
¹Ê¿ÉÉèÖ±ÏßASµÄ·½³ÌΪy=k£¨x+2£©£¬´Ó¶øM(-
£¬-
k)
ÓÉ
£¬µÃ£¨1+4k2£©x2+16k2x+16k2-4=0
ÉèS£¨x1£¬y1£©£¬Ôò(-2)x1=
£¬µÃx1=
´Ó¶øy1=
£¬¼´S(
£¬
)ÓÖB£¨2£¬0£©£¬¹ÊÖ±ÏßBSµÄ·½³ÌΪy=-
(x-2)
ÓÉ
µÃ
£¬ËùÒÔN(-
£¬
)¹Ê|MN|=|
+
|
ÓÖk£¾0£¬ËùÒÔ|MN|=
+
¡Ý2
=
µ±ÇÒ½öµ±
=
ʱ£¬¼´k=1ʱµÈºÅ³ÉÁ¢
ËùÒÔk=1ʱ£¬Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵ
¡..£¨9·Ö£©
£¨3£©ÓÉ£¨2£©Öª£¬µ±Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵʱ£¬k=1
´ËʱASµÄ·½³ÌΪx-y+2=0£¬S(-
£¬
)£¬
ÒòΪµãTµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
£¬
ËùÒÔµãTÔÚÆ½ÐÐÓÚASÇÒÓëAS¾àÀëµÈÓÚ
µÄÖ±Ïßl¡äÉÏ
Éèl¡ä£ºx-y+t=0£¬ÔòÓÉ
=
£¬½âµÃt=
»òt=
1µ±t=
2ʱ£¬ÓÉ
6µÃ5x2+12x+5=07
ÓÉÓÚ¡÷=44£¾0£¬¹ÊÖ±Ïßl¡äÓëÍÖÔ²CÓÐÁ½¸ö²»Í¬½»µã
¢Út=
ʱ£¬ÓÉ
µÃ5x2+20x+21=0ÓÉÓÚ¡÷=-20£¼0£¬¹ÊÖ±Ïßl¡äÓëÍÖÔ²CûÓн»µã
×ÛÉÏËùÇóµãTµÄ¸öÊýÊÇ2£®¡..£¨14·Ö£©
| c |
| a |
| ||
| 2 |
| 3 |
| a2-c2 |
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
£¨2 £© Ò×ÖªÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã×ø±êΪA£¨-2£¬0£©£¬B£¨2£¬0£©£¬Ö±ÏßASµÄбÂÊkÏÔÈ»´æÔÚ£¬ÇÒk£¾0
¹Ê¿ÉÉèÖ±ÏßASµÄ·½³ÌΪy=k£¨x+2£©£¬´Ó¶øM(-
| 10 |
| 3 |
| 4 |
| 3 |
ÓÉ
|
ÉèS£¨x1£¬y1£©£¬Ôò(-2)x1=
| 16k2-4 |
| 1+4k2 |
| 2-8k2 |
| 1+4k2 |
´Ó¶øy1=
| 4k |
| 1+4k2 |
| 2-8k2 |
| 1+4k2 |
| 4k |
| 1+4k2 |
| 1 |
| 4k |
ÓÉ
|
|
| 10 |
| 3 |
| 4 |
| 3k |
| 4k |
| 3 |
| 4 |
| 3k |
ÓÖk£¾0£¬ËùÒÔ|MN|=
| 4k |
| 3 |
| 4 |
| 3k |
|
| 8 |
| 3 |
µ±ÇÒ½öµ±
| 4k |
| 3 |
| 4 |
| 3k |
ËùÒÔk=1ʱ£¬Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵ
| 8 |
| 3 |
£¨3£©ÓÉ£¨2£©Öª£¬µ±Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵʱ£¬k=1
´ËʱASµÄ·½³ÌΪx-y+2=0£¬S(-
| 6 |
| 5 |
| 4 |
| 5 |
ÒòΪµãTµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
| ||
| 4 |
ËùÒÔµãTÔÚÆ½ÐÐÓÚASÇÒÓëAS¾àÀëµÈÓÚ
| ||
| 4 |
Éèl¡ä£ºx-y+t=0£¬ÔòÓÉ
| |t-2| | ||
|
| ||
| 4 |
| 3 |
| 2 |
| 5 |
| 2 |
1µ±t=
| 3 |
| 2 |
|
ÓÉÓÚ¡÷=44£¾0£¬¹ÊÖ±Ïßl¡äÓëÍÖÔ²CÓÐÁ½¸ö²»Í¬½»µã
¢Út=
| 5 |
| 2 |
|
×ÛÉÏËùÇóµãTµÄ¸öÊýÊÇ2£®¡..£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬±¾Ìâ¾ßÌåÉæ¼°µ½¹ì¼£·½³ÌµÄÇ󷨼°Ö±ÏßÓëÍÖÔ²µÄÏà¹ØÖªÊ¶£¬½âÌâʱҪעÒâºÏÀíµØ½øÐеȼÛת»¯£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿