题目内容
已知函数f(x)=-x+2n
在区间(0,∞)上的最小值是an(n∈N*).
(1)求an;
(2)设Sn为数列{
}的前n项的和,求
Sn的值;
(3)若Tn=
cos
-sin
,试比较Tn与Tn+1的大小.
| 1+x2 |
(1)求an;
(2)设Sn为数列{
| 1 | ||
|
| lim |
| n→∞ |
(3)若Tn=
| 3 |
| π |
| an |
| π |
| an |
(1)由题f′(x)=
-1
令f'(x)=0,得x=

所以an=
;
(2)因为
=
=
(
-
)
所以Sn=
(1-
)
所以
Sn=
(3) Tn=
cos
-sin
=2cos(
+
),
又由
=
知0<
<
≤
,
从而
<
+
<
+
≤
+
<
又y=cosx在[0,π]上单调递减,所以Tn<Tn+1.
| 2nx | ||
|
令f'(x)=0,得x=
| 1 | ||
|
所以an=
| 4n2-1 |
(2)因为
| 1 | ||
|
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以Sn=
| 1 |
| 2 |
| 1 |
| 2n+1 |
所以
| lim |
| n→∞ |
| 1 |
| 2 |
(3) Tn=
| 3 |
| π |
| an |
| π |
| an |
| π |
| an |
| π |
| 6 |
又由
| 1 |
| an |
| 1 | ||
|
| 1 |
| an+1 |
| 1 |
| an |
| 1 | ||
|
从而
| π |
| 6 |
| π |
| an+1 |
| π |
| 6 |
| π |
| an |
| π |
| 6 |
| π | ||
|
| π |
| 6 |
| 5π |
| 6 |
又y=cosx在[0,π]上单调递减,所以Tn<Tn+1.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|