题目内容

已知函数f(x)=,数列{an}满足a1=1,an+1=f(an)(n∈N*).

(1)求证:数列{}是等差数列;

(2)记Sn(x)=,求Sn(x).

解:(1)由已知得:an+1=

∴{}是首项为1,公差d=3的等差数列 

(2)由(1)得=1+(n-1)3=3n-2

∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn

当x=1,Sn(1)=1+4+7+…+(3n-2)

= 

当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn

xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1

(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1

=x+-(3n-2)xn+1

∴Sn(x)=

=

=

=

当x=0时,Sn(0)=0也适合.

综上所述,x=1,Sn(1)=

x≠1,Sn(x)=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网