题目内容
已知函数f(x)=(1)求证:数列{
}是等差数列;
(2)记Sn(x)=
,求Sn(x).
解:(1)由已知得:an+1=![]()
∴![]()
∴{
}是首项为1,公差d=3的等差数列
(2)由(1)得
=1+(n-1)3=3n-2
∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
当x=1,Sn(1)=1+4+7+…+(3n-2)
=
当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1
(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1
=x+
-(3n-2)xn+1
∴Sn(x)=![]()
=![]()
=![]()
=![]()
当x=0时,Sn(0)=0也适合.
综上所述,x=1,Sn(1)=![]()
x≠1,Sn(x)=
.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|