题目内容
(2009•成都二模)已知函数f(x)=Asin(2x+φ)(A>0,|φ|<
),且f(
)=-A.
(I)求φ的值;
(Ⅱ)若f(α)=
A,f(β+
)=
A且
<α<
,0<β<
,求cos(2α+2β-
)的值.
| π |
| 2 |
| 5π |
| 6 |
(I)求φ的值;
(Ⅱ)若f(α)=
| 3 |
| 5 |
| π |
| 12 |
| 5 |
| 13 |
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 6 |
分析:(I)通过f(
)=-A,结合|φ|<
直接求出φ的值;
(Ⅱ)利用(I)求出函数的表达式,通过f(α)=
A,求出sin(2α-
),cos(2α-
),利用f(β+
)=
A且
<α<
,0<β<
,求出sin2β,cos2β的值,然后利用两角和的余弦函数求cos[(2α-
)+2β]的值.
| 5π |
| 6 |
| π |
| 2 |
(Ⅱ)利用(I)求出函数的表达式,通过f(α)=
| 3 |
| 5 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
| 5 |
| 13 |
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 6 |
解答:解:(I)由题意,得f(
)=-A⇒Asin(2×
+φ)=-A,
∴sin(
+φ)=-1,
∴
+φ=2kπ+
,k∈Z
∵|φ|<
,
∴φ=-
.
(Ⅱ)由(I)可知,函数f(x)=Asin(2x-
),
∵f(α)=
A∴Asin(2α-
)=
A,
∴sin(2α-
)=
,
又
<α<
,
∴
<2α-
<
,
∴cos(2α-
)=
,
又f(β+
)=
A,
∴Asin(2β+
-
)=
A,
∴sin2β=
,
∵0<β<
,
∴0<2β<
,
∴cos2β=
,
∴cos(2α+2β-
)=cos(2α-
)cos2β-sin(2α-
)sin2β
=
×
-
×
=
.
| 5π |
| 6 |
| 5π |
| 6 |
∴sin(
| 5π |
| 3 |
∴
| 5π |
| 3 |
| 3π |
| 2 |
∵|φ|<
| π |
| 2 |
∴φ=-
| π |
| 6 |
(Ⅱ)由(I)可知,函数f(x)=Asin(2x-
| π |
| 6 |
∵f(α)=
| 3 |
| 5 |
| π |
| 6 |
| 3 |
| 5 |
∴sin(2α-
| π |
| 6 |
| 3 |
| 5 |
又
| π |
| 6 |
| π |
| 3 |
∴
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
∴cos(2α-
| π |
| 6 |
| 4 |
| 5 |
又f(β+
| π |
| 12 |
| 5 |
| 13 |
∴Asin(2β+
| π |
| 6 |
| π |
| 6 |
| 5 |
| 13 |
∴sin2β=
| 12 |
| 13 |
∵0<β<
| π |
| 4 |
∴0<2β<
| π |
| 2 |
∴cos2β=
| 12 |
| 13 |
∴cos(2α+2β-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 4 |
| 5 |
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
=
| 33 |
| 65 |
点评:本题是中档题,考查三角函数的解析式的求法,两角和与差的三角函数的应用,注意角的范围的转化,考查计算能力.
练习册系列答案
相关题目