题目内容

(2009•成都二模)已知函数f(x)=Asin(2x+φ)(A>0,|φ|<
π
2
),且f(
6
)=-A.
(I)求φ的值;
(Ⅱ)若f(α)=
3
5
A
,f(β+
π
12
)=
5
13
A
π
6
<α<
π
3
,0<β<
π
4
,求cos(2α+2β-
π
6
)的值.
分析:(I)通过f(
6
)=-A,结合|φ|<
π
2
直接求出φ的值;
(Ⅱ)利用(I)求出函数的表达式,通过f(α)=
3
5
A
,求出sin(2α-
π
6
),cos(2α-
π
6
),利用f(β+
π
12
)=
5
13
A
π
6
<α<
π
3
,0<β<
π
4
,求出sin2β,cos2β的值,然后利用两角和的余弦函数求cos[(2α-
π
6
)+2β]的值.
解答:解:(I)由题意,得f(
6
)=-A⇒Asin(2×
6
+φ)=-A,
∴sin(
3
+φ)=-1,
3
+φ=2kπ+
2
,k∈Z
∵|φ|<
π
2

∴φ=-
π
6

(Ⅱ)由(I)可知,函数f(x)=Asin(2x-
π
6
),
∵f(α)=
3
5
A
∴Asin(2α-
π
6
)=
3
5
A

∴sin(2α-
π
6
)=
3
5

π
6
<α<
π
3

π
6
<2α-
π
6
π
3

∴cos(2α-
π
6
)=
4
5

又f(β+
π
12
)=
5
13
A,
∴Asin(2β+
π
6
-
π
6
)=
5
13
A

∴sin2β=
12
13

0<β<
π
4

0<2β<
π
2

∴cos2β=
12
13

∴cos(2α+2β-
π
6
)=cos(2α-
π
6
)cos2β-sin(2α-
π
6
)sin2β
=
4
5
×
12
13
-
3
5
×
5
13

=
33
65
点评:本题是中档题,考查三角函数的解析式的求法,两角和与差的三角函数的应用,注意角的范围的转化,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网