题目内容

已知A是曲线C1:y=
ax-2
 (a>0)与曲线C2:x2+y2=5的一个公共点.若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是
 
分析:设出两曲线的交点A的坐标,代入两曲线解析式,分别记作①和②,由曲线C1的解析式,求出导函数,把点A的横坐标代入导函数中求出的导函数值即为曲线C1在A处的切线的斜率,进而表示出C1在A处的切线方程,由C1在A处的切线与C2在A处的切线互相垂直,得到求出的切线方程过曲线C2的圆心(0,0),把圆心坐标代入切线方程得到一个关系式,记作③,联立①②③,即可求出a的值.
解答:解:设点A的坐标为(x0,y0),代入两曲线方程得:
y0=
a
x0-2
①,x02+y02=5②,
由曲线C1:y=
a
x-2
得:y′=-
a
(x-2)2

则曲线C1在A处的切线的斜率k=-
a
(x0-2)2

所以C1在A处的切线方程为:y=-
a
(x0-2)2
(x-x0)+y0
由C1在A处的切线与C2在A处的切线互相垂直,
得到切线方程y=-
a
(x0-2)2
(x-x0)+y0过圆C2的圆心(0,0),
则有-
a
(x0-2)2
(0-x0)+y0=0,即y0=-
ax0
(x0-2)2
③,
把③代入①得:
a
x0-2
=-
a
(x0-2)2
x0从而x0=1再代入①得:y0=-a;代入②,
得:1+a2=5(a>0).
则a=2(-2舍去).
故实数a的值为2.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握两直线垂直时斜率满足的关系,掌握圆切线垂直于过切点的直径的性质,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网